
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. RECEIVED OCTOBER, 2020 1

PRIMAL2: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning - Lifelong

Mehul Damani1,∗, Zhiyao Luo1,∗, Emerson Wenzel1, Guillaume Sartoretti1,†

Abstract—Multi-agent path finding (MAPF) is an indispens-
able component of large-scale robot deployments in numer-
ous domains ranging from airport management to warehouse
automation. In particular, this work addresses lifelong MAPF
(LMAPF) – an online variant of the problem where agents are
immediately assigned a new goal upon reaching their current
one – in dense and highly structured environments, typical of
real-world warehouse operations. Effectively solving LMAPF
in such environments requires expensive coordination between
agents as well as frequent replanning abilities, a daunting task
for existing coupled and decoupled approaches alike. With the
purpose of achieving considerable agent coordination without
any compromise on reactivity and scalability, we introduce
PRIMAL2, a distributed reinforcement learning framework for
LMAPF where agents learn fully decentralized policies to re-
actively plan paths online in a partially observable world. We
extend our previous work, which was effective in low-density
sparsely occupied worlds, to highly structured and constrained
worlds by identifying behaviors and conventions which improve
implicit agent coordination, and enable their learning through
the construction of a novel local agent observation and various
training aids. We present extensive results of PRIMAL2 in both
MAPF and LMAPF environments and compare its performance
to state-of-the-art planners in terms of makespan and through-
put. We show that PRIMAL2 significantly surpasses our previous
work and performs comparably to these baselines, while allowing
real-time re-planning and scaling up to 2048 agents.

Index Terms—Multi-Robot Systems; Deep Learning in
Robotics and Automation; Distributed Robot Systems

I. INTRODUCTION

Multi-agent pathfinding (MAPF) is a challenging NP-hard
problem with numerous real-life applications such as surveil-
lance, search and rescue, and warehouses [1], [2]. In particular,
the goal of one-shot MAPF is to find collision-free paths for a
team of agents from their start positions to their goal positions
with the aim of minimizing a defined objective function, such
as the makespan (i.e., the time until all robots are on target)
or the sum of their path lengths. However, many real-world
problems are dynamic and often require agents to tackle a
series of targets instead of staying stationary after reaching
the first one. Lifelong multi-agent pathfinding (LMAPF), is

Manuscript received: October, 15, 2020; Revised January, 26, 2021; Ac-
cepted February, 19, 2021.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments.
∗ These authors contributed equally to this work.
† Corresponding author, to whom correspondence should be addressed.
1 Mehul Damani, Zhiyao Luo, Emerson Wenzel, and Guillaume Sartoretti

are with the department of Mechanical Engineering at the National University
of Singapore, 117575 Singapore. damanimehul24@gmail.com,
e0452733@u.nus.edu, emersonwenzel@gmail.com,
mpegas@nus.edu.sg

Digital Object Identifier (DOI): see top of this page.

Obstacle

Agent

Goal

Figure 1. Example of the type of highly structured environments we consider.

a variant of MAPF where agents are repeatedly assigned
new goal locations and are required to reactively compute
paths online [3], [4], [5], [6], [7], [8]. The performance
of LMAPF is generally measured in terms of throughput,
i.e., the average number of targets reached per unit time. In
contrast to conventional one-shot MAPF, LMAPF, typical of
factory-like environments, poses additional challenges as it
requires online algorithms capable of frequently replanning
as goals change. LMAPF becomes even more challenging in
densely populated, structured worlds typical of factory-like
environments due to the high number of conflicts between
individual agent paths. The main contribution of this paper
is the introduction of PRIMAL2, a distributed reinforcement
learning framework that extends our previous work in one-
shot MAPF, PRIMAL [9], to LMAPF for dense, structured
warehouse-like environments. In this new framework, special
emphasis is laid on achieving extensive implicit agent co-
ordination during lifelong MAPF for arbitrarily large team
sizes, while remaining fully decentralized and relying on local
interactions only.

We focus on planning decentralized paths for a large popula-
tion of agents in highly structured grid worlds, where obstacles
compose narrow corridors that only allow one agent to pass
at a time. To this end, we rely on a threefold approach:
first, we identify ideal behaviors and conventions that bring
harmony to the movements of completely decentralized agents
and enable the learning of such behavior through training aids
and an observation consisting of rich feature maps. Second,
we provide agents with an intuition about future states of
their surroundings, by giving each of them accesses to their

ar
X

iv
:2

01
0.

08
18

4v
3

 [
cs

.R
O

]
 4

 M
ar

 2
02

1

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. RECEIVED OCTOBER, 2020

neighbors’ predicted future movements (using single-agent
A* and ignoring other agents). Third, and drawing from the
lessons of PRIMAL, we rely on imitation learning through
a centralized planner to instill favorable behaviors that are
difficult to learn through vanilla RL. We also present a new
distributed training code which relies on Ray [10] and shows
significant speed gains over our previous works, by allowing
us to train models in about 12 hours, compared to 10 days
previously.

We present results of an extensive set of simulations con-
taining up to 2048 agents for both one-shot MAPF and
LMAPF in dense, highly-structured environments. There, we
experimentally demonstrate that PRIMAL2 agents success-
fully learn to adhere to necessary conventions and execute
coordinated manoeuvres which maximize joint performance
without any explicit communication. Our results also show
that PRIMAL2 is able to significantly surpass the performance
of our previous work and perform on par with state-of-the-art
planners in multiple scenarios, which resemble real-life multi-
robot deployments in structured environments.

The paper is structured as follows: Section II discusses the
state-of-the-art in one-shot and lifelong MAPF. Section III
formulates the specific one-shot and LMAPF problems con-
sidered. Section IV proposes PRIMAL2 and details the RL
framework, while Section V describes how learning is carried
out. Finally, Section VI presents and discusses the results from
our simulations, and Section VII contains the closing remarks.

II. PRIOR WORKS

A. One-shot Multi-Agent Pathfinding

MAPF planners can be broadly divided into three categories:
coupled, decoupled, and dynamically coupled. Coupled plan-
ners use the high-dimensional joint space to find complete and
(bounded sub)optimal paths but at a high computational cost,
which scales exponentially with the number of agents [11],
[12]. On the other hand, decoupled planners plan in the low
dimensional space of each agent, and adjust paths to avoid
collisions [13], [14], [15]. In particular, many recent works
have started looking to machine learning methods to learn
decentralized policies for MAPF [9], [16], [17]. Although
significantly faster than coupled approaches, decoupled plan-
ners do not guarantee optimal solutions and are typically
not complete. Dynamically coupled approaches lie between
coupled and decoupled approaches, by seeking to only increase
the search space when needed [18], [19]. They are able to find
(bounded sub)optimal solutions without exploring the full joint
configuration space.

In particular, our recent work, PRIMAL [9], proposed to
address the trade-off between high-quality paths and scalabil-
ity by relying on distributed reinforcement learning (RL) to
teach agents fully decentralized reactive policies capable of
computing individual paths online. Although PRIMAL scales
well to arbitrarily large team sizes, it performs poorly in
structured, densely occupied worlds that require substantial
agent coordination to be solved effectively. To address this
limitation of communication-free, decentralized MAPF plan-
ners, recent works have also proposed allowing agents to

learn local communication and decision making policies in
constrained environments using graph neural networks [17].
However, these communication learning methods often suffer
from poor scalability to larger teams.

B. Lifelong Multi-Agent Pathfinding

One of the common approaches to solve LMAPF involves
stitching one-shot MAPF instances together by using a (usu-
ally complete, bounded suboptimal) MAPF planner to recom-
pute paths at each timestep at least one agent is assigned
a new goal [5], [20], [4]. However, replanning time grows
exponentially with the number of agents, and resources are
wasted in the redundant computation of paths for agents whose
goals are unaffected. Svancara et al. [7] adapted one-shot
MAPF solvers for LMPAF, which reuse paths from previous
planning iterations. However, dense, high-traffic worlds may
contain many agents with conflicting paths, where signifi-
cant replanning is still required. Some planners plan new
paths for only the agents that have a new goal location, but
have to resort to non-optimal techniques such as holding an
agent’s position or providing a dummy path [3]. Another
very recent and promising approach is to plan paths within
a finite window, which leads to better scalability and a more
reactive algorithm [8], but at the cost of completeness. This
phenomenon worsens when the planning window size is small
in comparison to the average distance to goal, as agents cannot
anticipate the situation outside the planning window and might
plan greedy short-term paths that lead to unsolvable scenarios.

III. PROBLEM FORMULATION

A. Environment Setup

In line with standard MAPF tasks, our environments are
formulated as 2D discrete 4-connected grid worlds where
agents, goals, and obstacles occupy one grid cell respectively.
At each timestep, every agent can either move to a neighbour-
ing location in one of the cardinal directions or wait at its
current location (more details on the state/action spaces can
be found in Section IV). We consider highly structured worlds
with moderate to high obstacle densities and long corridors
which are created using a simple maze-generation algorithm
parameterized by the world size, the average obstacle density,
and the typical corridor length. Corridors impart structure to
the world, but they are also potential bottlenecks as they
can lead to deadlocks, and prudent planning is required to
efficiently navigate them. A typical example of the worlds we
consider can be found in Fig. 1. We consider two variants of
MAPF: one-shot MAPF and lifelong MAPF (LMAPF). While
the focus of this work is on the lifelong variant of MAPF,

(a) (b)

Obstacles

Corridor

Decision Point

End Point

(c)
Figure 2. Corridor examples: (a) dead-end, (b) usual corridor with two
endpoints, and (c) combination of 3 corridors forming a T-junction.

DAMANI et al.: PRIMAL2: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING - LIFELONG 3

Local FOVState Map
Path Length Map

Optimal path of A

Optimal path of B

A* Map(s) Delta MapPRIMAL Maps Blocking Map

Observation

Normalize

Optimal path of C

Observation range

Obstacle

Corridor Start Point

Corridor End Point

Agent A’s Position Agent A’s Goal

Agent B’s Position Agent B’s Goal

Agent C’s Position Agent C’s Goal

Figure 3. Observation space of the agents (here for agent A, in red), as detailed in Section IV-A. The first four maps are identical to our previous work,
providing information about obstacles, the agent’s own goal, and nearby agents and their goals (e.g., agent B, in blue). The path length map displays the
(normalized) shortest-path distance to the agent’s own goal from all non-obstacle cells in the FOV. npred (here, 3) A* maps provide the future position of
nearby agents, one per time step, predicted from single-agent A*. Finally, corridor information is encoded through the ∆X , ∆Y , and blocking maps.

we also considered a variant of one-shot MAPF to enable a
discussion on solution quality and to ease comparison with
baseline centralized methods.

B. One-shot MAPF
In the one-shot MAPF variant, each agent is required to

find a path to a unique goal assigned to it. Immediately upon
reaching its goal, the agent disappears from the map and ceases
to be a part of the state space of other agents. Meanwhile,
the unit grid cell occupied by the agent also frees up and
can be accessed by other agents. An episode terminates when
all agents have reached their goals. Although uncommon,
this MAPF formulation is valid when an agent can reach its
goal and stay there without interfering with others, such as
cars reaching a parking space [7] or trains entering a station
with parallel tracks [21], [22]. In this variant, our goal is to
minimize the makespan, i.e., the time needed for all agents to
reach their goal.

C. Lifelong MAPF
The LMAPF variant works in an online setting where agents

do not have information about their subsequent tasks a priori,
i.e., agents only know their current goal location and are
assigned a new goal only upon arrival to their current one.
These new goal locations are assigned randomly and are
constrained to be some minimum Euclidean distance away
from the agent’s current goal. The LMAPF environment can
be run indefinitely or terminated after a certain desired number
of timesteps. The objective in LMAPF is the maximization of
throughput, i.e., the average number of targets reached per unit
of time. Our constructed LMAPF environment aims to mimic
real-world robot deployments in distribution centers, where
robots are dynamically assigned new tasks and are constantly
in motion to complete them.

IV. (L)MAPF AS A RL PROBLEM

In this section, we cast the (L)MAPF problem into the RL
framework. In particular, we detail the observation and action
spaces, the reward structure, and the policy network.

A. Observation Space
We consider a partially observable world where each agent

can access the state of its surroundings within a limited
square field-of-view (FOV) centered around itself (in practice,
11×11). We believe that such a partially observable assump-
tion is representative of real-world scenarios, where robots
often only have access to incomplete information from their
onboard sensors. Additionally, having a fixed, local FOV can
help us learn a robust policy that can generalize to a wide range
of world sizes while maintaining the same neural network
structure.

In this limited FOV, information is separated into several
channels to aid learning. Based on our previous works, four
binary matrices provide information about obstacles, positions
of other agents, goals of those observable agents, and the
agent’s own current goal position if within the FOV; three
scalar values provide each agent with a unit vector pointing
towards its goal and the absolute magnitude of the distance to
its goal at all times [9]. We also provide each agent with a
path length map that contains the (normalized) shortest-path
distance to its goal from each non-obstacle cell within its FOV.
These distances are calculated using single-agent A*, ignoring
all other agents in the environment. We believe that such a
map resembles a gradient flow, enabling the agent to chart
an effective (individual) trajectory even when its goal is not
observable within the agent’s FOV.

We further introduce three smaller spatial maps (5× 5 in
practice, surrounded with zeros to reach 11× 11) centered
around the agents and encoding information about neighboring
corridors. Because of their narrow structure, corridors are
potential bottlenecks in the world, and hence need to be
efficiently navigated. Corridors are regions where agents have
at most two possible actions, excluding staying stationary.
Each corridor has two entry cells, barring corridors containing
a dead-end that only have one. We refer to these entry cells
as Endpoints and the cells outside the corridor connected
to these endpoints as Decision Points. Decision points are
named so, as agents occupying these cells have to take the
critical decision of entering the corridor, which can potentially

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. RECEIVED OCTOBER, 2020

result in a future deadlock inside the corridor. Fig. 2 contains
some examples of corridors and illustrates the special points
discussed above. All information about a specific corridor is
encoded in the endpoint cells of that corridor. The first two
maps, namely the delta maps, which contain values for ∆X and
∆Y , provide a corridor’s orientation as a displacement between
the two endpoints of that corridor. To construct these maps, the
coordinates of the endpoints of a corridor are first obtained. ∆X
is then defined as the difference of the x coordinates of these
two endpoints and ∆Y is the difference of the y coordinates of
these two endpoints. If a corridor is a dead-end, then it only
has one endpoint and the delta values are 0. The delta maps
are very sparse and only contain non zero values in the grid
cells which are the endpoints of a corridor. For example, in
Fig. 2 (b), the delta maps will only contain non-values in the
endpoint cells which are highlighted in blue. For the endpoint
at the bottom-left, ∆X = 2 and ∆Y = 2.

The third map, namely the blocking map, contains informa-
tion about other agents currently within a corridor. Similar to
the delta maps, the blocking map is a sparse map which only
contains non-zero values at the endpoints of a corridor. For an
agent currently outside and close to a particular endpoint of
a corridor, the blocking map contains a 1 at that endpoint, if
and only if there is at least one agent currently inside that
corridor moving in a direction that would cause it to exit
the corridor from that endpoint. The conventions detailed in
Section V-A1 restrict agents from turning back in a corridor
and thus, it is possible to ascertain the endpoint from which
an agent would exit the corridor. For example, in Fig. 3, the
red agent should not enter the corridor since the blue agent is
moving towards the endpoint close to it and this would lead
to a deadlock. Consequently, the blocking map takes the value
1 at the endpoint in the observation of the red agent.

In addition to specific corridor data, we believe that agents
can benefit from having an idea about other agents’ future
movements. To this end, we let each agent construct a number,
npred , of maps containing the predicted future position of
other agents within its local FOV, one per map (npred = 3 in
practice). In other words, npred refers to the number of future
timesteps that an agent looks ahead to. For each timestep, the
predicted future position of all visible neighbouring agents at
that timestep is shown in the map. These maps are generated
using single-agent A*, under the assumption that each agent is
alone in the world, and in practice would only require agents
locally share goal information with their neighbors. Thus,
these maps are imprecise but can still provide considerable
predictive power to the agent.

B. Action Space

We allow agents to take one out of five discrete actions in
the grid world at every timestep: Moving one cell in any of
the four cardinal directions or staying still. During training,
actions are sampled from a list of valid actions, and agents
are prevented from taking invalid actions, examples of which
are moving into another obstacle or agent. Moreover, we also
define some actions which fail to adhere to ideal predefined
conventions about navigating corridors as invalid (detailed in

Section V-A1). A supervised loss function (i.e., valid loss)
aids in learning valid actions. We experimentally observed
that learning valid actions does not depend on the preceding
trajectory, and hence, bootstrapping with rewards can cause
delayed and unfavorable convergence. Therefore, a supervised
loss function works better in practice than rewards for learning
the set of valid actions. Additionally, to prevent convergence to
oscillating policies that prevent exploration and stall learning,
agents are not allowed to return to the location they occupied
at the last timestep. However, agents are allowed to stay still
during multiple successive timesteps.

C. Reward Structure

To motivate agents to reach their goals quickly, we penalize
them at every timestep they are not on goal (rt =−0.3), as is
common in most reward functions for grid worlds. Agents are
also given a sizeable positive reward upon reaching their goal
(rt =+5), which effectively reinforces the immediate trajecto-
ries leading up to their goal. Finally, although agents are not
allowed to take invalid actions as discussed in Section IV-B,
it is still possible for them to collide with other agents in
specific scenarios, such as two agents trying to move into the
same empty cell. In such cases, agents are given a collision
penalty (rt =−2).

D. Network Structure

Our work relies on the asynchronous advantage actor-critic
(A3C) algorithm [23], and use the same network structure as
our previous work [9], parameterized by the set of weights θ .

The local observation channels are passed through two
VGG-blocks [24], followed by one last convolutional layer
to finally obtain a one-dimensional vector of features. In
parallel, the goal unit vector and magnitude are first passed
through one fully-connected (fc) layer. The concatenation of
both of these pre-processed inputs is then passed through two
fully connected layers, and finally fed into a long-short-term
memory (LSTM) cell. A residual shortcut [25] connects the
output of the concatenation layer to the input layer of the
LSTM. The output layers consist of the policy vector (discrete
probability distribution over the 5 possible actions considered)
with softmax activation and the value.

The value output V is updated to match the total long-term
cumulative discounted return Rr = ∑

k
i=0 γ irt+i at every visited

state during the most recent episode, using a standard L2 loss
Lvalue. The policy gradient loss (training the actor output π of
the network) reads

Lactor =
1
T

T

∑
t=1

σH ·H(π(ot))− log
(

π (at |π,o;θ)A(ot ,at ;θ))
)
, (1)

where σH ·H(π(ot)) = −σH πt(at) ·∑5
i=1 log(πt(ai)), (σH =

0.01 in practice), is an entropy term to encourage exploration
and discourage premature convergence [26], and A(ot ,at ;θ)
an estimate of the advantage function (see Eq.(2)).

As is standard in the advantage actor-critic algorithm, we
use an approximation of the advantage function by bootstrap-
ping using the value function (i.e., the output of the critic
network):

A(ot ,at ;θ) = rt + γ V (ot+1;θ)−V (ot ;θ)). (2)

DAMANI et al.: PRIMAL2: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING - LIFELONG 5

Besides the policy loss, we also rely on an additional loss
to speed up the actor training, namely Lvalid , which aims at
reducing the log likelihood of selecting an invalid move.

Lvalid =
1
T

T

∑
t=1

5

∑
i=1

log(vi(t)) · π̃t(ai)+ log(1− vi(t)) · (1− π̃(ai)),

(3)
where vi(t) denotes the ground truth of action i’s validity at
time t (1 if valid, 0 otherwise), and π̃ is the result of a Sigmoid
function being applied on π .

The final, combined training loss for the actor and critic
outputs of the network reads L f inal = α ·Lvalue+β ·Lactor +ζ ·
Lvalid , with α,β ,ζ ∈ R manually tuned weights.

V. LEARNING

In this section, we detail the methods used to achieve
implicit agent coordination, and the actual training process.

A. Coordination Learning

In highly dense and constrained worlds with high traffic like
those we consider, agents often find themselves in situations
where coordination becomes necessary to find effective paths.
While centralized planners can achieve this explicitly by
planning in the high dimensional joint space, decentralized
policies require agents to learn coordination implicitly with
limited information about the environment and without direct
control over other agents’ actions. In the absence of any
decentralized coordination learning, such as the techniques
detailed in this section, we observed that agents distributively
learn to act selfishly, merely trying to take the shortest A*
paths to their goal and showing no coordinating behavior or
regard for other agents’ actions (even though coordination
could lead to more optimal paths for themselves and a higher
total reward for everyone).

In order to implicitly teach agents coordination, we use three
techniques: 1) identifying and forcing agents to learn certain
conventions and exemplary behavior by using a supervised
loss function (Convention Learning), 2) using expert demon-
strations from centralized planners during training (Imitation
Learning), and 3) sampling from a wide range of environments
during training to enable learning of a robust, generalizable
policy (Episode Randomization).

1) Convention Learning: In highly constrained worlds with
a large number of long corridors, agents can drastically im-
prove the quality of their paths if they learn a common policy
that adheres to a certain set of conventions and effectively
breaks symmetries [27]. We have identified certain conventions
that are highly applicable to completely decentralized agents.
For example, an agent A should never enter a narrow corridor
if another agent is currently moving inside that corridor in
a direction opposite to that of agent A, as this will lead to
a deadlock. Similarly, agents moving inside a corridor should
never reverse their movements abruptly and retrace their paths
unless there is a deadlock (i.e., most other scenarios where
agents follow such behavior are bound to be non-optimal). If
agents learn to follow the conventions above, they can navigate
corridors much more efficiently and find higher quality paths

with more coordinated movements. However, these conven-
tions are not evident to agents and are very difficult to learn
using pure policy gradient methods, mainly because agents
learn selfish policies, and rewards cannot effectively capture
and reinforce such conventions.

To enable learning such conventions, we rely on our super-
vised valid loss function Eq.(3), which teaches agents to avoid
taking actions that go against the above conventions. A metric
called valid rate keeps track of the fraction of actions chosen
by agents which are valid, i.e., the success rate in selecting a
valid action. While the valid rate starts out low during training,
agents are eventually able to learn to adhere to conventions
and achieve a near perfect valid rate (> 99.5%). Interestingly,
we observe that agents can also learn when they are inside
corridors even though this information is not provided to them
explicitly through the observation (i.e., only the endpoints of a
corridor are evident in the observation). We believe that this is
made possible by the LSTM cell in the network architecture,
and future work will explore the integration of more powerful
recurrent networks with our current architecture.

2) Imitation Learning: The combination of RL and Imita-
tion Learning (IL) has been shown to lead to faster conver-
gence and higher quality solutions in robotic applications [28],
[29]. In LMAPF, IL from centralized near-optimal planners
which plan in the joint space can instill good quality coordina-
tion behavior in agents, which is challenging to accomplish by
decentralized RL. The ratio of RL to IL episodes is maintained
close to 50%, as in our previous work.

Expert demonstrations in IL episodes are generated by the
bounded suboptimal centralized planner ODrM* (with infla-
tion ε = 2) [18], and a trajectory of observations and actions
is attained. We use these trajectories and the corresponding
observations to minimize a standard behavior cloning loss:

Lbc =−
1
T

T

∑
t=0

log(P(at |π,ot ;θ)). (4)

Since ODrM* is a one-shot MAPF planner, several one-shot
MAPF instances need to be combined for a single LMAPF
environment as is common when adapting one-shot planners
to LMAPF [4], [5]. As a result, during training in the LMAPF
environment, ODrM* is called at all timesteps where path
replanning is required, i.e., all timesteps where at least one
agent reaches its goal location.

3) Environment Randomization: To ensure that agents en-
counter diverse environments during training, we randomize
the world size, density, and typical corridor length at the
beginning of each episode. Specifically, the size of our square
worlds is uniformly sampled between 10 and 70, the average
obstacle density between 20% and 70%, and the typical corri-
dor length between 3 and 21. We find that uniformly sampling
these parameters works well in practice. Curriculum learning
with increasing difficulty of environments has also been shown
to be effective in practice [30]. However, our experiments
with implementations of curriculum learning did not yield
significant performance improvements. Future works might
investigate this technique. In our environment randomization
process, we believe larger-sized worlds are necessary for
agents to learn to navigate to their goal even if it is a significant
distance away, while the smaller sized worlds expose agents

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. RECEIVED OCTOBER, 2020

to cluttered scenarios which require coordination and collision
avoidance to be solved effectively. The positions of agents,
obstacles, and goals are set randomly across the world, with
the constraints that each agent has at least one path to its goal,
and the goal is some minimum Euclidean distance away from
the agent (2 cells in practice). In addition to this, the agents’
initial positions are constrained, such that there is no more than
one agent inside any narrow corridor. This is primarily done
to ensures that the conventions discussed in Section V-A1 are
adhered to since the beginning of the episode.

B. Training

1) General Training Parameters: In line with standard RL
parameter choices, we use a discount factor (γ) of 0.95 and an
episode length of 256. However, IL episodes have a length of
64 because of the high cost associated with repeatedly calling
ODrM*. In addition to performing a gradient update at the end
of the episode, we also perform one immediately after an agent
reaches its goal. As a result, an agent may be trained more
than once per episode, depending on the number of targets
it reaches. We use the NAdam Optimizer with learning rate
2.10−5 and decay the learning rate proportionally to the inverse
square root of the episode count.

2) Distributed Training Framework: We train our model
utilizing Ray, a distributed framework for machine learn-
ing [10]. Ray allows us to bypass Python’s Global Interpreter
Lock and easily scale to a cluster using multiple GPUs. In
practice, the final policy was trained on a single workstation
equipped with a i9-10980XE CPU (18 cores, 36 threads) and
one NVIDIA Titan RTX GPU. The code employs 9 remote
training nodes, 4 of them calculating gradients via imitation
learning with ODrM*, while the other 5 run pure RL episodes
using the most up-to-date policy. The choice of these numbers
has been made experimentally to keep the RL to IL episodes
ratio close to 50%.

Each node is equivalent to a single meta-agent of the
overall A3C architecture and contains a copy of the LMAPF
environment in which 8 agents are learning to plan paths. All
9 nodes run in parallel and pass gradients to the master node
to be applied to the global network asynchronously. Training
lasts around 10 hours and converges within 35k episodes
(nearly 10x fewer episodes and 24x shorter training time than
our previous work). The full training code for PRIMAL2 is
available at https://bit.ly/PRIMAL2, and can easily be adapted
to other MARL tasks.

VI. RESULTS

This section presents our one-shot and LMAPF results
comparing PRIMAL2 to state-of-the-art planners.

A. One-Shot MAPF Results

For all of our experiments (one-shot and LMAPF), we
systematically tested team sizes in {4,8,16,1024}, world
sizes in {20,40,80,160}, densities in {0.3,0.65}, and typical
corridor lengths in {1,10,20}. We run 50 tests for each
possible combination of the above parameters, barring a few

infeasible combinations, and average the results in our plots.
Specifically, we do not run tests containing 64 agents or more
in 20-sized worlds, 256 agents or more in 40-sized worlds, and
1024 agents in 80-sized worlds. To eliminate any bias in our
results, all planners encounter the same test scenarios. We use
makespan (i.e., time until all robots are on target) and success
rate as our primary evaluation metrics.

We select CBSH-RCT [27] as our optimal planner and
ODrM* (with ε = 10) as our bounded suboptimal centralized
planner [18], with a timeout of 60s to remain consistent with
other works in the field. We also use PRIMAL as a baseline
MARL-based decentralized planner [9]. For PRIMAL and
PRIMAL2, we allow a maximum of 320 timesteps for 20 and
40-sized worlds, 480 timesteps for 80-sized worlds, and 640
timesteps for 160-sized worlds. We trained separate dedicated
models for one-shot and LMAPF for these planners. Note that,
while centralized planners have access to the full state of the
system, agents in PRIMAL and PRIMAL2 only have access
to a limited FOV.

One of our recent studies into PRIMAL showed that unsuc-
cessful episodes still often drive an overwhelming majority
of agents to their goal [31]. Therefore, in our one-shot MAPF
testings, we further provide PRIMAL/PRIMAL2 results where
we consider an episode to be successful when 100% and
95% of agents reach their goals successfully. The primary
motive of adding the 95% success metric is to better gauge
the performance of decentralized planners like PRIMAL2, and
is not meant to replace the standard 100% binary metric
that remains the norm in one-shot MAPF. In order to ensure
fairness, we also adapted centralized planners to the 95%
success metric. At the start of each episode, we sample a subset
of agents which consists of only 95% of the total agents. We
remove the remaining agents from the map and plan for the
reduced subset of agents only. We run 10 such iterations for
every episode (i.e, with 10 different subsets of 95% of the
agents) and classify that episode as a success if the planner is
able to successfully find a solution in any of the 10 runs. All
result plots are available at https://bit.ly/PRIMAL2 and in the
supplemental material, including LMAPF results. Fig. 4 shows
the success rates and path lengths in a representative case.

Based on our results, we first notice that all planners have
very high success rates in worlds with low densities and short
corridors. Next and as expected, we observe that the perfor-
mance of all planners drops with increasing obstacle density
and corridor lengths. This is because highly constrained en-
vironments have increased conflict in agent paths and require
extensive inter-agent coordination to solve effectively. While
all planners perform nearly equivalently in small team sizes
(up to 16 agents), we observe that PRIMAL2 with success
metric 100% is slightly outperformed by centralized planners
in moderate team sizes (16-128 agents). In large team sizes
(> 128 agents), the performance of centralized planners drops
sharply, which is a common problem faced by many central-
ized planners, due to the exponential increase in the dimension
of the joint configuration space to be searched. As a result,
PRIMAL2 is able to outperform centralized planners as team
sizes scale above 128 agents. We also note that PRIMAL2 also
comfortably outperforms our previous work, PRIMAL, in both

https://bit.ly/PRIMAL2
https://bit.ly/PRIMAL2

DAMANI et al.: PRIMAL2: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING - LIFELONG 7

Figure 4. Success rate and plan lengths of the considered planners in a
representative one-shot MAPF scenario. As expected, PRIMAL2 is slightly
outperformed by centralized planners in smaller teams, but outperforms them
in larger teams (≥ 256 agents). Due to its decentralized nature, PRIMAL2
trajectories are considerably longer than centralized planners.

moderate and large team sizes. Interestingly, we observe that
while the performance of PRIMAL2 with 100% success metric
drops off gradually as the number of agents are increased, that
of PRIMAL2 with 95% success metric stays nearly constant.
Upon careful inspection of the results, we often find that a few
agents get stuck in undesirable looping behaviour which could
be corrected with the introduction of a centralized planner
at this stage, and will be the focus of future works. Thus,
although PRIMAL2 is outperformed by centralized planners
in moderate team sizes when using the standard 100% metric,
we believe that the correction of this looping behaviour can
significantly increase success rates and it will be the focus of
future works.

Due to its decentralized and incomplete nature, we find that
paths yielded by PRIMAL2 tend to be considerably longer
than ODrM* and CBSH-RCT on average. In general, solution
quality tends to decrease as the number of agents increase
and as the environments become more constrained with longer
corridors and higher obstacle densities. We observe that, in
team sizes of up to 32 agents, the differences in solution
quality are minute, where PRIMAL2 paths tend to be 25%-
50% longer than ODrM* on average. In team sizes between
64 to 256 agents, the paths yielded by PRIMAL2 further
decrease in quality due to the increase in scale and on average,
are 75%-125% longer than ODrM*. ODrM* is unable to
generate solutions for 512 agents and above, and thus it is
not possible to get an estimate of the path suboptimality for
the largest teams. Intuitively, we expect the solution quality
of PRIMAL2 in comparison to the optimal solution to drop
down even further in large teams. It is interesting to note
that in comparison with our previous work, PRIMAL, the
paths of PRIMAL2 tend to be considerably shorter which we
believe is a result of the extensive inter-agent coordination
achieved in PRIMAL2. Concluding, even though we observe
a significant increase in implicit agent coordination compared
to our previous work, the decentralized nature of PRIMAL2
makes it very hard to achieve perfect joint coordination with
the same quality of paths as other centralized planners.

B. LMAPF Results

In LMAPF, agents aim at continually planning paths online
and maximizing the throughput (i.e., the average number
of targets reached per timestep). To implement conventional
baselines for LMAPF, we decompose the problem into a
series of one-shot MAPF instances as is commonly done
[20]. We select CBSH-RCT as a constrained-environment-
optimized optimal planner [27], as well as ODrM* (with ε = 3)
and Windowed-PBS (with w=5 and h=5) as our bounded
suboptimal planners [18], [8] and use a timeout of 60s per
(re-)planning instance. For all planners, our experiments last
128 timesteps in 20- and 40-sized worlds, 192 timesteps in
80-sized worlds, and 256 timesteps in 160-sized worlds. For
the conventional baselines, we compute the team’s average
throughput until that maximum number of timesteps, or until
one (re-)planning instance times out, whichever happens first.
By doing that, we note that early timeouts do not impact
the throughput negatively. Fig. 5 presents our results in two
representative scenarios.

We first observe that both centralized and decentralized
planners have high throughput in worlds with low density,
small team sizes, and short corridors. PRIMAL, PRIMAL2,
and windowed PBS scale remarkably well to larger teams,
while the performance of ODrM* and CBSH-RCT drops
sharply above 128 agents. However, as the typical corridor
length and the average obstacle density is increased to make
the worlds more constrained and challenging, we see drops
in performance for all planners. In general, we observe that
windowed PBS is able to marginally outperform PRIMAL2 for
nearly all scenarios up to 512 agents. While windowed-PBS
can still generally handle 1024-agent scenarios, we start to see
timeouts in some episodes. More generally, we observe that
the re-planning times of windowed-PBS are well over an order
of magnitude higher than PRIMAL2 for moderate and large
team sizes. It is worth noting that to adapt windowed-PBS to
our problem definition, we need to re-plan at every timestep
an agent reaches its goal, which can happen nearly every time
step for larger teams. In this context, we note that PRIMAL2
offers real-time re-planning capabilities (with generally sub-
second decentralized re-planning), which might make it more
attractive for online deployments.

More generally, our results highlight the trade-off between
maximizing throughput and minimizing planning time. While
windowed PBS is able to achieve high throughput for team
sizes up to 512 agents through frequent re-planning and larger
planning times, PRIMAL2 achieves slightly more moderate
throughput but plans drastically faster. We also note that,
while PRIMAL and PRIMAL2 have equivalent performance in
worlds with low densities and short corridors, PRIMAL2 easily
outperforms PRIMAL in larger team sizes (≥ 128 agents)
and in constrained worlds with long corridors. We believe the
additional coordination learning techniques introduced in this
paper are the reason for this improvement. Interesting learned
maneuvers can be observed in the videos of our PRIMAL2
results, which can be found at http://bit.ly/PRIMAL2videos.

We further tested the above LMAPF baselines on the
warehouse and maze maps available on movingai.com [32],

http://bit.ly/PRIMAL2videos

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. RECEIVED OCTOBER, 2020

Table I
LMAPF THROUGHPUT ON MOVING.AI BENCHMARKS (TIMEOUT: 60S, RESULT MARKED AS ”-” IF ALL SCENARIOS TIME OUT)

Planner Maze (4-64) Maze (128-512) Maze (1024-2048) Warehouse (4-64) Warehouse (128-512) Warehouse (1024-2048)
ODrM* (ε = 3) 0.21 - - 0.17 - -

PRIMAL 0.07 0.31 0.71 0.08 0.74 2.10
Windowed-PBS 0.26 1.08 - 0.18 1.95 -

PRIMAL2 0.17 0.55 1.05 0.17 1.49 3.36

Figure 5. Average throughput and plan lengths of planners for LMAPF;
interrupted lines indicate that no solutions were found for larger team sizes.
Although windowed-PBS is able to match or outperform PRIMAL2, it plans
an order of magnitude slower, with individual replanning instances reaching a
minute for larger teams. Note how the new coordination techniques introduced
in this work allow PRIMAL2 to significantly surpass PRIMAL.

which serve as benchmark maps for the MAPF community.
These results are summarized in Table I. For ease of analysis
and conciseness, we present averaged results for small (4-64
agents), moderate (128-512 agents) and large teams (1024-
2048 agents). In the maze maps, we find that windowed-PBS
is able to outperform PRIMAL2 in small and moderate team
sizes, but falls behind in large team sizes where it generally
times out. These results follow a similar pattern to the results
on our LMAPF environments, wherein centralized planners are
able to outperform or perform on par with PRIMAL2 in small
and moderate team sizes, but fall behind PRIMAL2 in large
teams. In the warehouse maps, we observe that PRIMAL2
performs on par with windowed-PBS and ODrM* in small
teams. However, windowed-PBS is able to perform better in
moderate team sizes for these maps. Similar to the maze maps,
windowed-PBS times out in large team sizes while PRIMAL2
continues to increase throughput. We also note that both for
maze and warehouse maps, PRIMAL2 performs adequately in
2048 agent scenarios, the largest team size we have tested yet.

Finally, we also present averaged results over all worlds,
which compare the performance of PRIMAL2 to two other
PRIMAL2 variants: 1) no convention learning, and 2) no

Figure 6. Performance of PRIMAL2, compared to two PRIMAL2 variants:
1) no convention learning, and 2) no convention learning, and no corridor
information in the observation. Note how, in larger teams (≥ 128 agents),
PRIMAL2 outperforms these variants by more than 10% in terms of through-
put, showcasing the importance of convention learning.

convention learning and a reduced observation with no corridor
information channels in the agents’ observation (Fig. 6).
We observe that, while these three planners perform near-
identically up to 64 agents, PRIMAL2 surpasses them in larger
team sizes (by around 10%). We believe that these results show
that for smaller teams, the gains from following conventions
are neutralized by the higher freedom of movement enjoyed
by not following any. However, as team sizes increase, these
conventions become integral to plan effectively and bring order
to agents’ movements.

VII. CONCLUSION

This work introduced PRIMAL2, a new distributed rein-
forcement learning framework for lifelong multi-agent path
finding in highly constrained worlds. In this framework, agents
plan individual paths online in a wholly decentralized way,
based on local information and interaction toward exhibiting
joint maneuvers. We focused on achieving implicit agent
coordination by helping agents learn ideal behaviour through
conventions, which effectively break symmetries and bring
harmony to their movement. Through our results, we high-
lighted the importance of these conventions in larger teams and
experimentally showed that PRIMAL2 agents are successful
at learning them. We also showed that PRIMAL2 scales to
arbitrarily large teams, up to 2048 agents, and can plan
effective paths online while producing throughput comparable
to centralized planners for both one-shot and LMAPF. Future
work will try to further improve implicit agent coordination
via a variety of techniques such as more powerful recurrent
network architectures, the systematic investigation of RL-to-IL
ratios, or the use of recent off-policy learning methods.

ACKNOWLEDGMENTS
We would like to extend our warmest gratitude to Jiaoyang Li,
for happily agreeing to share her code and providing instru-
mental support for the CBSH-RCT and PBS algorithms used
as baselines. Detailed comments from anonymous referees
contributed to the presentation and quality of this paper.

DAMANI et al.: PRIMAL2: PATHFINDING VIA REINFORCEMENT AND IMITATION MULTI-AGENT LEARNING - LIFELONG 9

REFERENCES

[1] K. Nagorny, A. W. Colombo, and U. Schmidtmann, “A service- and
multi-agent-oriented manufacturing automation architecture: An IEC
62264 level 2 compliant implementation,” Computers in Industry,
vol. 63, no. 8, pp. 813–823, 2012.

[2] J. Berger and N. Lo, “An innovative multi-agent search-and-rescue path
planning approach,” Computers and Operations Research, vol. 53, pp.
24–31, 2015.

[3] H. Ma, J. Li, T. K. Satish Kumar, and S. Koenig, “Lifelong multi-agent
path finding for online pickup and delivery tasks,” arXiv, 2017.

[4] M. Čáp, J. Vokřı́nek, and A. Kleiner, “Complete decentralized method
for on-line multi-robot trajectory planning in well-formed infrastruc-
tures,” in Proceedings Int. Conf. on Automated Planning and Scheduling,
ICAPS, vol. 2015-January, 2015, pp. 324–332.

[5] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proc. of the International Joint Conf. on
Autonomous Agents and Multiagent Systems, AAMAS, vol. 2, 2019, pp.
1152–1160.

[6] V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and W. Yeoh, “General-
ized target assignment and path finding using answer set programming,”
in Proc. of the Int. Symposium on Combinatorial Search, SoCS 2019,
2019, pp. 194–195.

[7] J. Švancara, M. Vlk, R. Stern, D. Atzmon, and R. Barták, “Online
multi-agent pathfinding,” in Proc. of the National Conf. on Artificial
Intelligence, AAAI, vol. 33, 2019, pp. 7732–7739.

[8] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. Kumar, and S. Koenig,
“Lifelong multi-agent path finding in large-scale warehouses,” preprint
arXiv:2005.07371, 2020.

[9] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. Satish Kumar, S. Koenig,
and H. Choset, “PRIMAL: Pathfinding via Reinforcement and Imitation
Multi-Agent Learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378–2385, 2019.

[10] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” 2017.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[12] T. Standley, “Finding optimal solutions to cooperative pathfinding prob-
lems,” in Proc. of AAAI, vol. 1, 2010, pp. 173–178.

[13] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” in Proc. of the IEEE Int. Conf. on Intelligent Robots and
Systems, 2006, pp. 5960–5963.

[14] D. Silver, “Cooperative pathfinding,” in Proc. of the Artificial Intel-
ligence and Interactive Digital Entertainment Conf., Marina del Rey,
California, USA, 2005, pp. 117–122.

[15] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 1-4, pp. 477–521, 1987.

[16] Y. Zhang, Y. Qian, Y. Yao, H. Hu, and Y. Xu, “Learning to cooper-
ate: Application of deep reinforcement learning for online AGV path
finding,” in Proc. of AAMAS, vol. 2020-May, 2020, pp. 2077–2079.

[17] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in arXiv, 2019, pp. 1901–1903.

[18] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.artint.2014.11.001

[19] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[20] Q. Wan, C. Gu, S. Sun, M. Chen, H. Huang, and X. Jia, “Lifelong
Multi-Agent Path Finding in A Dynamic Environment,” in Proc. of the
Int. Conf. on Control, Automation, Robotics and Vision. IEEE, 2018,
pp. 875–882.

[21] S. Mohanty, F. Laurent, N. Bhattacharya, J. Watson, M. Schneider,
E. Nygren, C. Eichenberger, C. Baumberger, C. Scheller, A. Egli,
G. Vienken, I. Sturm, G. Sartoretti, and G. Spigler, “Flatland-RL: Multi-
agent reinforcement learning on trains,” arXiv, 2020.

[22] D. Roost, R. Meier, S. Huschauer, E. Nygren, A. Egli, A. Weiler, and
T. Stadelmann, “Improving sample efficiency and multi-agent commu-
nication in RL-based train rescheduling,” arXiv, 2020.

[23] V. Mnih, A. P. Badia, L. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. of the Int. Conf. on Machine Learning,
vol. 4, 2016, pp. 2850–2869.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint 1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, jun 2016.

[26] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz, “Re-
inforcement learning through asynchronous advantage actor-critic on a
GPU,” Proc. of the Int. Conf. on Learning Representations, 2017.

[27] J. Li, G. Gange, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig, “New
techniques for pairwise symmetry breaking in multi-agent path finding,”
in Proc. of ICAPS, vol. 30, 2020, pp. 193–201.

[28] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tun-
yasuvunakool, J. Kramár, R. Hadsell, N. de Freitas, and N. Heess,
“Reinforcement and imitation learning for diverse visuomotor skills,”
arXiv, 2018.

[29] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep q-learning from
demonstrations,” arXiv, 2017.

[30] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. of the 26th Int. Conf. On Machine Learning, ICML
2009, 2009, pp. 41–48.

[31] G. Sartoretti, S. Koenig, and H. Choset, “A Combined Learning- and
Search-based Approach to Complete Multi-Agent Path Finding,” in Proc.
of the IJCAI workshop on MAPF, 2019.

[32] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Bartak,
“Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks,” Proc.
of SoCS, pp. 151–158, 2019.

http://dx.doi.org/10.1016/j.artint.2014.11.001

	I Introduction
	II Prior Works
	II-A One-shot Multi-Agent Pathfinding
	II-B Lifelong Multi-Agent Pathfinding

	III Problem Formulation
	III-A Environment Setup
	III-B One-shot MAPF
	III-C Lifelong MAPF

	IV (L)MAPF as a RL Problem
	IV-A Observation Space
	IV-B Action Space
	IV-C Reward Structure
	IV-D Network Structure

	V Learning
	V-A Coordination Learning
	V-A1 Convention Learning
	V-A2 Imitation Learning
	V-A3 Environment Randomization

	V-B Training
	V-B1 General Training Parameters
	V-B2 Distributed Training Framework

	VI Results
	VI-A One-Shot MAPF Results
	VI-B LMAPF Results

	VII Conclusion
	References

